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Abstract. Several transition metal compounds show a transition from the low-spin (LS) to
the high-spin (Hs) electronic state with increasing temperature. The cooperative nature of
the transition is usually parametrised by an interaction constant I, the origin of which is still
under discussion. In the frame of the lattice expansion mode, the interaction I is attributed
to the elastic interaction between the spin-changing ions as a result of the deformation of the
crystal accompanying the transition. In this work the complete elastic energy originating
from the so-called image pressure is calculated in closed form by considering the crystal as
an isotropic homogeneous elastic medium with the spin-changing ions as incompressible
inclusions described by the full elastic dipole tensors PHS and P15, respectively. The calculated
values of I based on x-ray data and reasonable estimates of the elastic constants of the
compounds [Fe(2-pic);]Cl,-Sol (2-pic = 2-aminomethylpyridine, Sol = MeOH, EtOH) and
[Fe(2-pic-ND,);|Cl,-EtOD are compared with the experimental values of I'.

1. Introduction

The phenomenon of thermally induced high-spin (HS) = low-spin (LS) transitions in
transition-metal compounds, particularly iron(IT) complexes, is still the object of various
experimental and theoretical investigations. The transition is usually described by the
fraction y of molecules in the Hs state. The fraction y is a function of temperature. A
large variety of transition curves y(T) have been observed (Giitlich 1981, Haddad ez al
1981, Ewald er al 1969). The y(T') curves measured in crystalline solids deviate from a
Boltzmann population of the Hs and LS energy levels of the spin-changing ions. Different
interaction mechanisms that lead to the cooperative nature of the (HS) = (LS) transition
in crystalline solids have been suggested:

(i) coupling to lattice vibrations (Zimmermann and Kénig 1977),

(ii) a cooperative Jahn-Teller type of interaction of the Hs ions (Kambara 1979,
1980. 1981), and

(iii) elastic interaction between Hs and LS ions via an image pressure that arises from
the stress-free boundary condition (Ohnishi and Sugano 1981, Spiering er al 1982).

The starting point of all these considerations is the observed volume change of the
lattice accompanying the transition of the ions from the Ls to the Hs state. This volume
change leads to a change of the phonon frequencies of the lattice, which are considered
by Zimmermann and Konig (1977). With increasing volume, the Debye frequency wp,
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states and the unit-cell volume of the isomorphic compound with the spin-changing ions
substituted by the metalions M, and V-is the volume of the crystal per complex molecule.
The quantity AV}, = Vi — Vs is the volume change of the compound due to the spin
transition and is related to the volume difference of the ‘hard spheres’ Avy = vys — v
by

AVy = yoAoy - (1.3)

Different features of the HS = LS transition in solid compounds, like the metal
dilution effect (Sanner er al 1984), the influence of external pressure (Meissner 1983) and
the specific heat (Jakobi et al 1988), are correctly predicted by the proposed treatment of
the lattice expansion model. But unsatisfactorily there is a great discrepancy between the
calculatedvalue for the interaction parameter I and the value resulting from experiment.
The calculated value is about a factor of 5-10 too small, which means that only a minor
part of the relevant interaction is captured by the described approximation of the lattice
expansion model (Adler ef al 1986).

So far the calculations within the framework of this model have only taken into
consideration the volume change of the crystal due to the spin transition. Detailed x-ray
measurements (Mikami ez al 1980) revealed that the crystal undergoes not only a change
in size but also a change in shape owing to the Hs = LS transition, both proportional to
the Hs fraction y. Every lattice vector x(T') can be expressed as (Wiehl er al 1986)

x(T)=(1+a AT + &, - Ay) - x(T,) (1.4)

with AT =T — Tyand Ay = y(T) — y(T,). The tensor e describes the thermal lattice
expansion and £, the deformation accompanying the spin transition, the trace of which
entered into the previous calculations: Tr(e,) = AVy, /Vc. In the present paper we have
taken into account the full tensor £, for our calculations. The spin-changingions and the
corresponding metal ions are, therefore, treated as anisotropic defects characterised by
tensors P" (n = Hs, LS, M) instead of isotropic spheres. The traces of these tensors are
proportional to the respective misfits (v, — vy).

From the viewpoint of elasticity theory, this extension of the previous calculation is
imposed for mathematical reasons. Every displacement field U(r) in an isotropic elastic
medium satisfies the differential equation

(1 — 20)AU + grad(div U) = 0. (1.5)

A multipole expansion in terms of vector spherical harmonics Y f, (for definition see
Appendix 1) of the six independent solutions of this equation has been given by Shuey
and Beyeler (1969). revealing directly the r dependence of the displacement field U.
Displacement fields proportional to the same pewer of r are of the same multipole order.
A field varying as r~? is called an elastic dipole field. The dipole field satistying (1.5) has
the form (Shuey and Beyeler 1969)

1 1/ Y} 3A+8u<a Y! 3A+u)< Y3
=3 2( 001/2PS+ 2 Az/z M~ 2 2M1/3P/T4>-
A+2ur-\(4m)" 10u ‘v (3m)Y 10 “m(Rm)Y

U(r) (1.6)

The Lamé coefficients A and u are related to the bulk modulus K and Poisson ratio o by

= 4(3A + 2u) and 0 = $A/(A + u). The strength of an elastic dipole is characterised by
six parameters: P, and Py, (M = =2, —1,0, 1, 2), which are combined into a symmetric
tensor P. In the previous treatment of the lattice expansion model only the contribution
to the displacement field U proportional to P,, which describes the volume change of the
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N point defects within an isotropic elastic medium of volume V, and a stress-free surface
S,. The elastic energy is obtained by the volume integral

W=i%|e odV, (2.3)
or according to Gauss’ law by the surface integral
W= -3 f UodsS,

where dS, is the outward-directed surface element of V,. Following Eshelby, W is
computed in three steps:

(i) The starting point of his considerations is an infinitely extended elastic medium
with a closed surface S, marked out and a distribution of N point defects localised inside
S.. The displacement field caused by the defect i shall be U7 and the corresponding stress
and straintensors £ and o}, respectively. The elasticenergy W, of the described system
is composed of the sum of the elastic self-energies W..(i) of the particular defects and the
sum of all interaction energy terms W,,(i,j) for two different defects i and j. The
displacementin the neighbourhood of the defectsis not necessarily described by elasticity
theory. Therefore a spherical region of volume v, and radius R, around each defect is
excluded. The energy inside v, is composed of the electronic and vibrational energies,
which are assumed to be independent of the stress on the surface of v, and of a small
elastic energy contribution as a result of the finite compressibility of the sphere. This
contribution is neglected. This point has been discussed by Shuey and Beyeler (1969).
On grounds of these considerations we get for the self-energy of defect i:

W.(0) = —4 f Ur o ds, (2.4)

where dS; = R,dQ;e,. is the outward normal vector to the surface S, of vy. This
expression is independent of the particular position of the defect i. The interaction
energy of the so-called direct interaction between two defects depends on the relative
positions and orientations of the defects:

Wieliof) = = | Ura7 - V7o) as, (2.5)

where S is an arbitrary closed surface in the elastic medium separating the two defects
i and j. The elastic energy W, for N defects is the sum

N
W= 3 (W0 + 1S Wi .6)
i= J#i :
W,,, will be calculated for several compounds in a forthcoming paper.
(ii) The displacement field on the surface is the superposition of the fields of all
defects so that U” = =, U7 and o™ = X, o} . The elastic energy outside S, is obtained

by
W, = —%fuxax ds,. (2.7)

Removing the elastic medium outside S, one obtains a finite crystal containing N defects
in equilibrium by surface tractions o dS§,,.
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We have introduced the mean-squared dipole tensor components:

1
N

[P =5 2 |PL[? = cHSIPES|2 4 cIS|PES|2 + oM P2, (3.3)
When passing from an infinite elastic medium to a crystal of finite size, the displacement
field on the surface has to be calculated:

N
Us(r) = E} Uz (r}). (3.4)

The vectors r and r' are directed to an arbitrary point outside or on the surface of the
crystal from the origin of the coordinate system and from the defectiat R;, respectively,
so that r; = r — R;. Since the distance between neighbouring defects (i.c. the lattice
spacing) is sufficiently small compared with the dimensions of the crystal, the discrete
distribution of dipole defects can be treated as a continuous distribution with dipole
tensor density ar(R), so that the sum in (3.4) is replaced by an integration:

U*(r) = J U%(r') dV(R). (3.5)

U7 is given by (1.6) replacing P, by 7,, « = s, M. For a homogeneous distribution of
defects, the density 7 does not depend on R. The components are 7, = P,/V, where
V¢ = V,/Nis the crystal volume per defect and P, is the mean tensor component

P, = cHSPHS 4 ¢LSPLS 4 (MpY.

a

The integration in (3.5) is performed assuming V, to be a spherical volume of radius R,.
The following integrals have to be calculated:

Rﬂ
yol f f r2¥h,r') dV(R) dV(R) = R*dR dQ (3.6)
0 Q

with indices {(LJM)} = {(100), (12M), (32M); M = =2, —1, 0, 1, 2}. These integrals
were solved by interchanging integration and differentiation of the functions r’ and
r'~! by suitable differential vector operators D5, (D}yr' ™' = r'"2Y}y, and D3}, r' =
r' 2Y3y). For the explicit expressions for the D%, see Appendix 2. With the known
solutions of the integrals of r’ and ' ~! we obtain for r = R,

Vi'Dy J FldV =Dlyr Tt =Y () (3.7a)
Va

VD3, J rdV=Dj,(r+iR2r ") = (r? = R2r Y y(r). (3.7b)
Va

Finally the displacement outside V, is given by

N 1( Yk - _
“(r) = . P+ P;
vrn /1+2,ur2{ (4m) 2 % M

[3/1 +8u Y, 3A+u) Yy ( B ﬁ)}}

- > (3-8)

10u (31)"? 0u  (27)"? r?



Elastic interaction in spin-crossover compounds 1431

and the trace €., = & ,, + €., + €. ... The displacement U, is then given by
U.=R,(Ze! yaye, + 3e_.e,). 4.2)

The displacement U(R,) of (3.12) can also be written as a product of a second-rank
tensor times e,. With Y, = —e,(47)"? and Y!,, = [3/(47)]"?aye,. comparison of the
coefficients gives the desired relation:

., =3NV,'(3A +2u) 'P, e =NV, '2u) 'Py (4.3)

where V/, is the volume of the spherical crystal.

Since €, describes the strain at all points of the homogeneous medium, the tensor P
has the same property. If there are equivalent lattice sites in a unit cell of a real crystal,
only the average tensor of the different sites can be determined by the tensor €. This
fact has consequences for the calculation of the direct interaction where all tensor
components of P at all lattice sites are needed.

5. Application of the lattice expansion model to the Hs = Ls transition in mixed crystals

Essential results concerning the spin transition phenomenon have been obtained from
investigations of mixed crystal compounds such as, for example, [Fe,Zn,_,
(2 — pic);]|Cl,.EtOH. For such compounds the mean tensor components are given by

P, = xyP!S + x(1 = y)PtS + (1 — x)PY a=s,M. (5.1

All complexes in the lattice, HS, LS and metal complexes M, are considered as defects
even in the case of a pure lattice of only one species. So every lattice has a deformation
tensor €. which is referred to a fictitious lattice containing complexes of vanishing tensor
P. This lattice can be defined by the minimum elastic energy achieved by the special
shape and size of complexes. As long as only tensor differences are considered, the
fictitious lattice, which is a reference for the absolute strain energy, plays no role. Only
changes of a lattice can be measured. The tensor difference €S — £S5 which will be
denoted by the index HL (e!"), describes the deformation as a result of the transition
from the LS to the Hs state. Similarly we obtain the differences €M and £ M comparing
the lattice of the isomorphic metal compound with the pure Ls and HS compounds (at
the same temperature), respectively.

Defining anaverage tensor £.inthe same way as P and inserting (4.3) in the expression
for the energy W = W, — W, — W, of (3.2) and (3.12) we obtain (V. = V,/N)

W =NV '$K(y, — 1)%72(%1? + %(9v8 + 19y, + 26) ,}; lec.Mlz)

— VK (o — 1)ya'(e-3.§+ ben + D el (5.2)
M

where the bulk modulus K and the Eshelby constant y,, are introduced instead of the
Lamé coefficients A and u. If we omit terms that are independent of the Hs fraction ¥,
the strain energy per spin-changing complex G = W/xN valid for all x and y is given by

G =yE +xyA — xyT". (5.3)
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The lattice expansion model in the approximation of dipole defectsin ahomogeneous
elastic medium obviously does not give a complete explanation of the observed inter-
action energy between the Fe complexes in the HS and Ls states. We cannot expect an
improvement by using higher-order terms of the multipole expansion of the displacement
vector U. The next terms describing a uniform dilatation are proportional to r~*. The
displacement U(R,) on the surface is then proportional to R, ! and therefore vanishes
for macroscopic crystals.

We are, however, convinced that the interaction between the complexes is of elastic
origin. Therefore we shall discuss in a forthcoming paper the direct interaction (2.5).
Preliminary computer calculations have been started. For the lattice parameters of the
deuterated compound we obtained I values of about 60 cm ™! with a bulk modulus and
an Eshelby constant as has been determined by the Mossbauer measurements. On the
one hand, such a large value is encouraging in explaining the large interaction constant
but on the other hand one runs into the difficulty of explaining the absence of clustering
effects in these phase transitions.

7. Conclusions

Eshelby discussed the interaction energy of a solid solution of defects by the so-called
‘sphere-in-a-hole model’. The spherical defects interact via the image pressure of the
stress-free boundary. The interaction energy depends on the concentration of the homo-
geneously distributed defects but not on the shape of the crystal. The defects are
considered as spherical elastic inclusions with elastic constants different from the sur-
rounding material, which is approximated by a homogeneous isotropic elastic medium.
The direct elastic interaction between spherical defects vanishes. The problem solved in
this paper is as follows. The inclusion is described by a general dipole defect with
vanishing compressibility. The defects are homogeneously distributed over the crystal
and have the same orientation. The defects interact via the image pressure of a stress-
free spherical surface. The spherical shape of the crystal is deformed by the coherently
oriented defects. The expressions combining the deformation tensor and the tensor
components of the defects are explicitly given.

This result has been applied to the HS = Ls phenomenon. The cooperativity of
the phase transition is understood by an interaction between the Hs and Ls complex
molecules. The spin-changing ions are considered as dipole defects with the properties
described above and an interaction constant is calculated from the deformation of the
lattice accompanying the transition observed by x-ray measurements and the elastic
constants of the crystal. Separating the contributions of the spherical part (according to
Eshelby) and the anisotropic part of the dipole tensor of the defects to the interaction
constants one finds the result that the spherical part is the smaller contribution.

At present the ‘lattice expansion model’ is the only approach that relates the inter-
action energy to the properties of the spin-changing ions and of their surrounding lattice,
which are accessible by independent experimental methods. The examples known from
the literature, where the interaction parameters were deduced from the transition curves
and where x-ray data are available, are discussed. The spherical part of the dipole tensor
is not sufficient to explain the size of the interaction observed. This was the difficulty of
the ‘lattice expansion model’ in the approximation of the *sphere-in-a-hole model’ of
Eshelby. The anisotropic part of the dipole tensor improves the situation considerably
but still the interaction cannot be taken as understood. A quantitative understanding
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and

(J+ 1)(2J + 3) o J-1
627 — 1)(2J + 1)) E’M<— - )

ar r
(J 1)1/2E (a +J>
2J -1, or r

dY < J+2 )1‘- J+l(i {>
symera©im ==z 27+ 1)) "M \er

+< J—1 )VZEJ_l(a +J+1)
227 + 1) M\or

J+2\"? o J+1
dYI+I — ( ) ]+2< — >
symgra Ejy p

symgrad YJ,,! = <

2J+3 ar
+( JQ2J-1) )I/QEJ <i+1+2) (Al.4
6(2J +3)(2J + 1) Mar' v ) 4)

The tensor spherical harmonics Ef;, are similarly defined as the Y%, replacing the unit
vectors e, by the unit tensors

ay = 2 C%rﬁr/lllnemen- (AlS)
The Ef,, obey the orthonormality relation
Tr(f (Ef)*Efn dﬂ) =0.16,0um-

The traction on the surface of a sphere is evaluated by use of the following formulae
(Shuey and Beyeler 1969):

€Yo = ("27]+_1> mmf - (2]Jttll> vzm 1 (A1.6)
and
e Elit” = _<2]J++23> Yo' eBlil = -<2(;J++21)> e
o= () - (2
e.Ely' = (%) I/2Y§M e,Ely’ = (211—_11)”;41.

Appendix 2. Differential operators D},

The vector operators Dy, are constructed in the same manner as the vector spherical
harmonics:

L _ IM
DJM - 2 CLmlnenDLm-
m,n
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The operators D,,, and D;,, generate the spherical harmonics Y\, and Y3, multiplied by
r' % from the functions r' ~! and ', respectively (r' = |r — R|). The operator D,,, is very
easily constructed. The functions r' ~2Y,,,(r') are linear combinationsof x| r’ 3 (i = 1,2,

3). Since (8/dx,)r' ' = —x,r' " the differential operator is the same linear combination
of —d/dx;:

D - 1(3)‘/23 D __1(3)'/2<a+_a a1

T \n) ez b= T T\ ax_lay)' (AZ.1)

The operators D, are more complicated:

7 1/2
Du=(1) D.-3.-3.2)

_1/21\2 .
D5 . = +§<—) [D,(—1,-1,4) *iD (-1, —1,4)]

—1<1—0—5)IED 1.-1.0)+2iD
‘VL—4\4JT [ Z( b b )_ 1 Xyz]

(A2.2)

135\ 12 ,
Dsw=55(2) [D.0.-3,0)%iD,3.~1,0)

where

19’
Y 3 axdy oz

D b = 18( +b+3)32+ b+3 62+ + b+ 82>
Ja,b,c)= 662( a )3 (a C)ay2 (a c)azz.

(A2.3)
D, and D, are obtained by cyclic permutation of x, y, z. Application of these operators
on r and r~! (correspondingly r') gives (x; = x, y, z):

X 2 2 2
D, r=—=(ax* +by* +cz*)
P

(A2.4)
xyz
D‘-"’r=75—
and
5
D.r = ——,Dxr+(3a+b+c)1§
re ¥
5
Dyr = =3 Dyr+(a+3b+ 0=
\ 7 D, =
. (A2.5)
D= =S D.r+(a+b+30) %
; =
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requires a generalisation to (i) anisotropic elastic properties, (i1) non-spherical shapes
of the crystals, and (iii) the calculation of the direct elastic interaction between the
complexes. Another open question is the dependence of intra-molecular Hs and LS states
on the weak stress fields in the crystals and whether such a dependence gives significant
contributions to the interaction as is assumed by Kambara (1981) and also by Ohnishi
and Sugano (1981).
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Appendix 1. Elastic multipoles in an isotropic medium

Shuey and Beyeler (1969) have given a multipole expansion in terms of vector spherical
harmonics Y, for the equilibrium displacements of the second-order differential
equation (1.6). For a given JM with J # 0 there are six independent solutions:

LUMn)=r“*ﬂm43/+1)+211p1;'+(A4—ule+3nﬂj4-nrﬁyﬁf}

U%M(’) = rjij

Ulw(r) = r/='¥ly,!

Ui (r) = r {[2u(37 + 2) + 24(J + D]¥);!
—(A+w)Q2J - DJU + 1]y

Uin(r) =r="1y)y,

USy(r) = r 1 72y750,

(Al.1)

The YJ, are linear combinations of the products of the spherical harmonics and the
spherical unit vectorse; = e,, e, = i(l/\/?.)(ex * ie,):

Yiu(6. @) = 2 CM e,V 1.(6. @) (A1.2)

m.n

where the C7},,,, are the Clebsch-Gordan coefficients. The Y i obey the orthonormality
relation

f(YJLM)*YJL'}w’ dQ = 5LL'5JJ'5MM'-

For the calculation of the strain tensor € the divergence (div) and the symmetric
gradient (symgrad) applied to the Y}, are needed:

S ARRNTE o J- 1‘)
e g VYV =
div ¥4y, (21 1 ) Y"M(ar P divYiy, =0

<J+1)‘/3Y (a +J+2>
2J+ 1 M\ or r

(A1.3)

: J+1
div ijw
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Figure 1. The theoretical expression for I'/K according to equation (5.4b) (I’ = I'(x=1))
is plotted using the x-ray data of the three compounds as given in table 1. The ratio I'/K with
a bulk modulus of K =1.35x 10" Nm 2 and the experimental value of the interaction
constant I' (table 1) are shown as horizontal lines. For the deuterated compound the
theoretical value of I'/K, which takes into account only the isotropic part of the dipole tensor
(P,), is plotted to demonstrate the larger contribution of the anisotropic tensor components.

magnitude between these contributions. The actual values are the result of the large
anisotropic deformation of the lattice. A vanishing isotropic partis even conceivable. In
that case the crystal changes its shape but not its volume.

The anisotropic dipole interaction treated in this paper improves the calculation
considerablybutstill the size of I" cannot be explained completely by the image pressure.
In figure 1 the ratio I'/K with a bulk modulus of K = 1.35 X 10" N m~? and the exper-
imental I" values of table 1 are shown as horizontal lines. The value of K was determined
by Mdssbauer measurements of the Debye—Waller factor fin the deuterated compound
(Meissner et al 1987). For the EtOH compound I'/K leads to a reasonable Eshelby
constant of y = 1.46 (o = 0.35). The value of y = 2.0 for the deuterated compound is
not in agreement with y, = 1.25 also determined by the Mdssbauer work of Meissner et
al (1987). In the case of the MeOH compound I'/K is obviously too large (y, ~ 3).

The ratio ¢ = A/(2T) for a mixed crystal system depends on the tensors & and
e and the Eshelby constant y, according to (5.4a, b). A rather good agreement
between the ratio of the experimental values A and I' and the ratio €M /&'t which is
the g value in the isotropic approximation, was found for the three compounds. For
example the calculated value of the EtOH compound ¢ = (.926 corresponds (o a ratio
A/(2T') = 0.93. These agreements are remarkable because the calculated value of I is
too small by a factor of 5-10 if only the isotropic approximation is applied. Since the
discrepancy in the size of I' could not be removed we do not expect an agreement of the
ratios on the basis of the improved theory. The tensor £Z"" is known from x-ray work
of Mikami et al (1980) (see table 1). The g-values calculated with (5.4a, b) are now in
the range 0.83-0.80 for 1 < y, = 3, which is much less than the measured value of 0.93.
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We use the abbreviation Cy = 3KV (y, — 1)y, "', which has the dimension of an energy.
Then the three terms are expressed as

E= CE( V. By - 25&)552 + ‘CE< Ve 16 (95 + 19y, + 26)
YoV v YoV »
X ([ + e ]eh), — 2y, + D(eMell > (5.4a)
I' = Ce[(ellf)” + %2y, + D(efielty),] (5.4b)
A" =2Cg[ell el + 5 Q2yy + D(ediellh),] (5.4c)

where the invariant of the product of two tensors £* and &” is denoted as (e%e’), = =
€4* eh . The expression for E contains energy terms proportional to the strain tensors
€, o = M, Hs, Lsitself. This means that E is defined by the fictitious stress-free lattice,
so that we have for pure states (y = x = 1) non-vanishingstrain energy G. This behaviour
may be unexpected at first sight.

The relation to the thermodynamic description of the spin transition phenomenon is
easily seen. The Gibbs free energy of the non-interacting stress-free spin-crossover
complexes as can be observed in liquid solution is Gy (y. p, T). In the solid solution of
a highly diluted mixed crystal (x— 0) the elastic self-energy G? (n = Hs, Ls) of the
complexes that are defects at their lattice sites has to be added so that G,_,, =
Gui(y.p. T)+ yG + (1 = y)G'S. Omitting the energy shift G- the Gibbs free
energy per spin-changing complex for x > 0 is obtained, including the interaction term
G of (1.1),as

G(y,p, T) = GuL(v,p. T) + (G = G) + yA(x) — y’T(x).  (5.5)

Comparison with (5.3) leads to theoretical expressions for the energy difference GHS —
G = E, the parameter A(x) = xA’ and the interaction constant I'(x) = xI"".

6. Discussion

The theoretical expression for GHS — G13 cannot be compared with experiment without
further assumptions since £ depends on the strain tensor &M itself and on the sum £}

+ £¢°, which are not available experimentally. In the followmg we will discuss the
parameters A and ', which depend on the differences (see (5.4)) et = €115 — £1S and

eMl = gM >. The tensor &1 1s given in table 1 for three compounds and for one of

them the tensor e‘““ =glil — gl

The linear dependence of the parameters A and I on the concentration x of the spin-
changing ions is in agreement with the experimental results. This fact was first proved
under the assumption of isotropic dipole defects (Spiering et al 1982). The problem was
the explanation of the size of the interaction constant I'. In figure 1 the expression for
I'/K as derived from (5.4b) is plotted versus the Eshelby constant y, for the three
compounds of table 1 (in the following denoted as EtOH, MeOH and deuterated
compound, respectively). I'/K depends only on x-ray data, which are the volume V. per
complex molecule and the strain tensor €L For the deuterated compound the isotropic
part, which depends only on ¢! | is plotted This part is obviously less than 30% of the
total calculated interaction. Normally anisotropic effects are small corrections to the
mainisotropicpart, but here the opposite is true. Remembering the same r~2dependence
of the isotropic and anisotropic stress fields, we cannot expect different orders of
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The displacement field U' is now obtained from the solution of the boundary-value

problem of an isotropic elastic sphere subject to external tractions o'e, = — o e, on the
surface S,. Applying (2.1) and (2.2) the traction @', is calculated to be
Y(l)” — 97 + 14‘11. — Y%M

Ye,|,-.x, = =NR*(A + ”(4 ,— Py ) 3.9

4 erlr~R-d NRd ( .u) u (4]_[)1/2 s 10 % M (3]_[)1/2 ( )

Difficulties arise from the regions of volume v, enclosing the defects because the surface
of each of these regions is an additional boundary of the elastic medium. This com-
plication canbe overcome by an argument due to Siems ( 1986). The defects together with
their surrounding volumes v, are replaced by elastic material with the same properties (A
and u) as the crystal in such a way that the original displacement field U is conserved so
that the boundaries vanish. The displacement U is a linear combination of the basic
solutions U, (see Appendix 1), which are regular at r = 0:

UI(") = 2 apmUjy + a/;MU;M + a;MU3M° (3.10)

The coefficients a}), are determined by comparison of the surface traction o' (r=R),e,
calculated from (3.10) with the surface traction of (3.9). The displacement field U'(r) of
the boundary becomes proportional to r:

N r( 4 Yy - 9+lue - Y, )

I(r) = o3  + Y )- :
v =3 +2u Rg<3,1 +2u (4m)i2 7 20u %PM(&I)W (3-11)
The total displacement U = U' + U~ of the surface of the sphere

Y - 1 <. Yl )
a) = A -GA+2u) 5 P+ — ey 3.12
OR.) = 3NR(~Gh+ 2t i P e S ) )

is inserted in the integral of (2.9):

A >-1 2u

— 2 3
Wat Wo=N (3 Ri) Gramci+

_ (94 + 14u)(34 + 2w) _ )
x | Pt + Pyl*).

( 8 120‘“2 % l M|
Subtraction of W, + W; from W., gives the desired elastic energy W of the crystal. The

small energy change of the crystal when replacing the elastic inclusions by the volumes
v, that contain the defects is neglected.

(3.13)

4. The relation between P and &,

A homogeneous distribution of defects leads to a uniform deformation of the crystal
measured by x-ray diffraction. The deformation is described by the tensor &, so that a
lattice vector x, changes to x = x, + €.,. The surface of a crystal of spherical shape with
radius R, is therefore displaced by U, = & R,e,. In order to compare U, with U(R,) of
(3.12), the Cartesian € tensor (g, 4; 1, kK = x, y, z) is expressed by spherical unit tensors
a,, (see equation (A1.5)). The traceless part €. 4 of & is written as £ 4 = 3, £ . a,, with
the spherical components

1 _ .
o = \//6 (2€c.zz T e T Ec.vv) Ecx1 = +(£c.xz * lgc.yz)

Een = ‘(Sc.xx - gci}'}') + 1€¢ &y (41)

W=



1428 N Willenbacher and H Spiering

(iii) A stress-free crystal surface is achieved applying an additional so-called ‘image
traction’ o' dS, = —0 ™ dS,. Inside the crystal an additional displacement field U'is built
up. The work done by the volume V, in this step is

W, = %fUIa‘dSa. (2.8)

The total displacement field inside the crystal is the sum U = U* + U'. The sum W, + W,
can be expressed by the displacement U and the image stress tensor o';

W, + W, = %f Uo'ds,. (2.9)

The total elastic energy W, of a system of N point defects embedded in a finite crystal
with a stress-free surface S, is the sum W =W, — W, — W;. In the framework of our
treatment of the lattice expansion model, we are only concerned with dipole defects.
The displacement field U of such a defect is given exactly by (1.6) so that the calculation
of W, is straightforward. To compute W, and W; the displacement U on the crystal
surface S, has to be determined. According to the arguments above we shall first execute
U” = 2,U; outside and on the surface of S,. From U” we easily derive o' dS, and thus
the calculation of U' can be reduced to the simple boundary-value problem of anisotropic
medium to an external traction o' dS,. The difficulty to overcome is the execution of
the sum ZUY. We have carried out this sum for a homogeneous distribution of dipole
defects in a medium with a spherical surface.

3. The elastic energy of a HS = Ls compound

In order to describe the elastic energy in a mixed crystal of a spin-crossover compound,
three types of dipole defects with dipole tensors P” (n = Hs, LS, M) representing the spin-
changing ions in the Hs and Ls states and the metal ions M, respectively, have to be
introduced. Each kind of defect is randomly distributed over the lattice sites with a
concentration ¢”.

The self-energy W, of N defects in an infinite medium is calculated according to
equation (2.4). The stress tensor o times the radial vector e, of the surface element of
defectiisevaluated using (2.1), (2.2) and the formulae in the paper of Shuey and Beyeler
(1969) (see Appendix 1):

_ 1 l[’Y‘P—E<'1 91 + 14u)Y}
age,, -\/J'L'(/1+2,U) 3 7~/1 00 s < 10V/3( 13) §3¥
6V?2 \
G u)ng)P;;J. 3.1)

The integrationin (2.4) s easily performed using the orthogonality relations of the vector
spherical harmonics. The result is also given in the paper mentioned but for one type of
defect:

N u (F+ 1
S 2aRY (A +2u)2\" T (10p)

+36(A +y)2]%fPMIZ). (3.2)

W, 5 [3(3A + 8u)(94 + 14u)
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defect, was taken into consideration. The terms proportional to P,, describing the
dilatationless deformation were neglected. Therefore, a step towards a more complete
calculation of the interaction energies in the framework of the lattice expansion model
is naturally introduced by treating the spin-changing ions as dipole defects P" still
embedded in an isotropic elastic medium. Unfortunately, the solution of this more
general problem could not be found in the literature. Eshelby has solved the case of
spherical defects (P, # 0, Py =0 for all M) embedded in arbitrary-shaped crystals
approximated by isotropic elastic media (Eshelby 1956). In this contribution we present
a calculation of the interaction energy taking into consideration three kinds of general
dipole defects P" (n = us, Ls, M), each type of defect being statistically distributed over
the lattice sites. The statistical distribution is a reasonable assumption because the image
pressure acts as an infinite-range interaction, which results in the proportionality of " to
the concentraion x of the interacting complexes. This energy contribution does not
prefer clusters. The calculations are done with the restriction to crystals with spherical
surfaces for convenience. A general statement for arbitrary-shaped crystals as Eshelby
found for spherical defects has not been obtained. In §§ 2 and 3 the elastic energy is
evaluated on the grounds of the assumptions above. Following the arguments of Eshelby
the contribution of the image stress to the elastic energy is calculated analytically by
passing over to a continuous distribution of defects. Additionally there is a direct
interaction mechanism between the defects at distance R, which is proportional to R .
The calculation of the corresponding elastic energy term is straightforward but lengthy
and requires a summation over all lattice sites. This term, which is expected to be small
at least for lower concentrations of the spin-changing ions, will be evaluated in a later
paper. The direct interaction vanishes in the case of spherical defects (Bitter 1931), and
therefore it did not appear in the previous treatment of the lattice expansion model.

2. Elastic energy of point defects

The deformation of an elastic medium is described mathematically by the displacement
field vector U(r). The associated strain tensor is separated into a traceless part £, and a
part proportional to the unit matrix 1, € = £4 + 3¢, where & = Tr(g). The traceless
strain tensor is obtained by application of the symmetric gradient operator to the
displacement field:

€4 = symgrad U (2.1a)
and g, by the divergence of U

e, =divU. (2.1b)
The stress tensor o is related to the strain tensor by Hooke’s law. which in the case of
an isotropic elastic medium reads

o =2uey + 331 + 2u)e1. (2.2)
In the absence of external forces, the equilibrium condition Vo = 0 leads to the dif-
ferential equation (1.5) for the displacement vector U. The boundary condition for a
stress-free spherical surfaceise.or = 0. If Uis given in terms of vector spherical harmonics
asin (1.6). the tensors £ and o and the quantity e,o are easily obtained by applying the

formulae of Shuey and Beyeler (1969) referred to in Appendix 1.
Our problem to be solved is the calculation of the elastic energy of a distribution of
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of the lattice decreases so that the resulting higher density of phonon states of the lattice
decreases its free energy. The non-linear dependence of the free energy on the change
of wp, results in an interaction, which is, however, negligibly small. Kambara (1979,
1980, 1981) and also Ohnishi and Sugano (1981) have introduced a coupling between
the lattice deformation and the electronic energies of the Hs and LS states according to a
cooperative Jahn-Teller interaction. In this case the electronic energy difference
between the HS and LS states and the differences within the Hs state are taken to be
dependent on the fraction y(T'). The coupling parameters are difficult to estimate and
calculation of the parameters based on the molecular and crystal properties has never
been tried.

The intensive studies on mixed crystal systems, especially on the compounds
[Fe.M, _(2-pic)3]X;,-Sol (M = Co, Zn; 2-pic = 2-aminomethylpyridine; X = CI, Br;
Sol = MeOH, EtOH) (Adler er al 1986, Sanner er al 1984, Koppen er al 1982) and the
corresponding deuterated compounds (Jakobi e al 1988, Meissner 1984), have been
very successful with regard to uncovering the interaction mechanism responsible for the
HS = Ls transition. In these systems the distances between the interacting spin-changing
ions have been varied by replacing part of them by other transition-metal ions M without
changing the structure of the crystal. The main features of these gradual spin transition
behavioursinsolid compounds are well described by a Gibbs free energy G(y, p T) that
is the sum of two parts, the free energy G (v, p. T) of the isolated non-interacting ions
(x — 0) and an interaction part Gj,,, which has been parametrised as

Gine = YA(x) — ¥’T(x). (1.1)

An equivalent expression G, = AGy + I'y(1 — y),sothat A = (AG — T'), has already
been extensively discussed by Slichter and Drickamer (1972). Large enough T values
also produce first-order phase transitions. In order to relate the parameters A and I to
the crystal properties, Spiering et a/ (1982) have discussed in more detail the elastic
interaction between the Hs and Ls ions via the image pressure (Eshelby 1954, 1956),
which was first introduced by Ohnishi and Sugano (1981). The spin-changing ions are
considered as ‘hard spheres’ embedded in an isotropic homogeneous elastic medium
characterised by elastic moduli K and 0. The ‘hard-spheres’ approximation has been
Justified in these molecular crystals by the fact that the intra-molecular frequencies (200—
500 cm ') are an order of magnitude larger than the inter-molecular lattice frequencies
(less than or equal to 50cm™") (Meissner er al 1987). Within this so-called ‘lattice
expansion model’, the intra-molecular degrees of freedom are not dependent on the
stress field of the crystal. This point of view is opposite to that of Kambara (1980). So
the interaction term G, only depends on the volumes of the ‘hard spheres’ v, (n =
Hs, Ls, M) representing the spin-changingions and the corresponding metal ions, respect-
ively, and the elastic moduli K and . The interaction is a result of the stress field caused
by the misfit of v, to the lattice, which provides a volume v, for the considered ions in
that lattice structure. The expressions for the interaction parameters A and I’ obtained
from calculations based on this model are

Yo — 1 (AVHL)2
I'=4%K —_— 1.2
’ Yo Ve * (1.2a)
A =2ql q=Vy—Vis)/ (Vs — Vis) (1.2b)

where vy = 3(1 — 0)/(1 + 0) is the so-called Eshelby constant. The quantity V,, (n = Hs,
Ls, M) represents the respective unit-cell volume of the compound in the pure Hs and Ls



