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Abstract: Further strong growth of solar energy conversion based on PV (photovoltaic) technology
requires constant improvement to increase solar cell efficiency. The challenge in front-side
metallization of Si-solar cells is to print uniform fine lines with a high aspect ratio to achieve
higher efficiencies simultaneously with a reduced consumption of raw materials. An in-depth
understanding of the relationship between paste composition, rheology and screen-printed line
morphology is essential. Three model pastes with similar silver content and corresponding vehicles
differing in their thixotropic agent content were investigated. Rheological properties (yield stress,
viscosity, wall slip velocity, structural recovery, and fracture strain) were determined using steady
and oscillatory shear, as well as elongational flow rheometry. Pastes were screen-printed at various
speeds through a layout screen including line widths between 20 and 55 µm. Dried fingers were
analyzed with respect to line width, aspect ratio (AR) and cross-sectional area. Our investigations
reveal that minor changes of thixotropic agent result in substantial variations of the paste’s flow
properties. However, this only weakly affects the line morphology. Irrespective of printing speed or
finger opening, AR is slightly increasing; i.e., the screen-printing process is robust against changes in
paste rheology.
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1. Introduction

Screen-printing is a traditional and versatile printing method [1,2]. It is well established, not only
in textile or poster printing, but also in the fabrication of all kinds of electronic devices, such as
printed circuit boards [3,4], thin film transistors [5], displays, touch panels [6], low temperature co-fired
ceramic devices [7,8], and photovoltaic cells [9,10]. Screen-printing is easy to implement and allows
for high through-put, and is thus economically attractive for high-volume products like silicon (Si)
solar cells. Today, essentially all commercial Si-solar cells are metallized via screen-printing [11] and
this technology was one of the key factors enabling recent improvements in efficiency. A further
substantial increase of solar energy conversion is required to meet increasing global electric power
demand, as well as the challenges of climate change. However, about 7.5% of global silver production
is currently employed in the metallization of solar cells [12]. A constant, significant reduction of silver
consumption per wafer is necessary for a further expansion of PV installation. This drives perpetual
efforts to decrease the width and increase the aspect ratio and uniformity of the finger lines making up
the front contacts of Si-solar cells, aiming at higher cell efficiency and lower silver consumption [13].
Besides an optimized wafer surface treatment, adapted printing parameters and an appropriate
screen design, this requires a carefully adjusted silver paste formulation. Two key features, namely,
the wetting and the flow properties of the paste, are decisive to achieve high-performance printed
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fingers. From flooding of the screen to snap-off of the screen from the wafer and drying of the printed
features, the paste is exposed to complex loads, including a broad range of shear rates and stresses.
In addition, resistance to elongational deformation during snap-off, structural recovery after being
squeezed through the screen openings, and slip at the boundaries of these openings, also have to be
considered [14–23]. Rheological characterization of up-to-date commercial silver pastes for front-side
metallization is a particular challenge. Rheological measurements are limited by wall slip and shear
banding phenomena, and sample spill is strongly dependent on the employed experimental set up,
and particularly on the surface energy and roughness of the sample fixtures, and the details of the
experimental protocol. Recently, we have presented detailed experimental protocols allowing for
a meaningful, comprehensive characterization of paste flow properties addressing all of the aspects
mentioned above [24]. Silver pastes for solar cell metallization consist of silver particles, which finally
provide the conductivity of the printed and sintered structures, as well as glass frits opening the
passivation layer during sintering [25]. The particles are usually suspended in a mixture of organic
solvents and so-called thixotropic agents, with binders added as polymeric, non-volatile organic
ingredients to control the flow behavior of the paste and to provide the appropriate cohesive and
adhesive properties of the dry layer [17,26–28]. Hydrogenated castor oils and diamines are often used
as thixotropic agents, whereas synthetic acrylate polymers or ethyl cellulose are frequently added
as binders.

The flow properties of screen-printing silver pastes and concepts relating to the control of yield
stress and shear thinning behavior via the above-mentioned polymeric additives have been discussed in
various studies [27–30]. It is generally accepted that screen-printing pastes should exhibit a substantial
degree of shear thinning [16,17].

A comprehensive rheological characterization of a commercial silver paste for front-side
metallization of solar cells was provided by [16]. However, a direct comparison to printed electrode
properties was not made. In [21], four commercial silver pastes characterized as suggested in [16]
were used to develop screen design strategies for an optimized front-side metallization of solar
cells. A thick emulsion over mesh (EOM) layer enabled printing of fingers with a high aspect ratio,
whereas a thin EOM layer limited paste spreading. Differences in wetting properties among the pastes
were not addressed in this study. Recently, the effect of paste rheology during the screen-printing
process was directly investigated in a combined rheological and high-speed video imaging study [30].
Screen-printing ZnO pastes, including different types and concentrations of thixotropic agent and
binder, on a glass substrate confirmed that the length of the pre-injection zone is inversely proportional
to the yield stress, whereas the length of the cling zone was linearly related to the filament rupture
strain. The printed electrode width turned out to be inversely proportional to the product of the yield
stress and high shear viscosity. In this study, the spreading process was limited to a period of 100 ms
after the squeegee had passed.

Two recent studies revealed that wall slip of silver pastes can have a significant impact on paste
transfer and line shape [22,23]. A higher slip velocity resulted in a higher silver laydown and a higher
aspect ratio of the printed lines, as well as in a narrower intersection of busbar and fingers. The gain of
scientific insight in such studies trying to correlate paste rheology and printing performance is limited
when pastes with different compositions, not only with respect to rheology but also in terms of their
substrate wetting properties, are investigated [21,23].

Therefore, we choose a model system comprising silver particles, a mixture of organic solvent,
and a thixotropic agent, as well as ethyl cellulose as binder. The silver content and the total amount of
non-volatile organic additives were kept constant. The mixing ratio of thixotropic agent and binder,
however, was varied in a certain, narrow range. This resulted in a substantial change of several
rheological parameters, including yield stress, shear modulus, low shear viscosity, structural recovery
and elongational fracture strain, without affecting the wetting behavior. Pastes were printed using
a standard commercial lab-scale screen printer. A layout screen with finger opening width varying
between 20 and 55 µm was used and different printing speeds (70–210 mm s−1) close to technical
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conditions were employed. The resulting finger lines were analyzed with respect to cross-sectional
area, line width and height, as well as fluctuations of these quantities along the printed structures,
allowing for a direct correlation to the above-mentioned rheological parameters.

2. Materials

Three model silver pastes (M1–M3) based on three corresponding vehicle formulations (V1–V3)
were characterized in this study. All vehicles were made from the same organic solvent (a mixture
of four parts diethylenglycoldibutylether and one part terpineol), thixotropic agent (Thixatrol Max),
and organic binder (ethyl cellulose). They differed in their concentration ratio of Thixatrol Max (T-Max)
and ethyl cellulose (EC) binder as shown in Table 1. Since these polymeric additives are not surface
active [31] and their amount was varied only in a small range, we can safely assume that the surface
tension and wetting behavior were similar for all investigated model systems. The changes in vehicle
composition were in a range typical for commercial silver pastes.

Diethylenglycoldibutylether and terpineol were mixed and EC binder was dissolved using
a tempered dissolver (DISPERMAT® LC, VMA-Getzmann GmbH, Reichshof, Germany) at 60 ± 10 ◦C
until the solution became clear. After, T-Max was dissolved using the same equipment at 70 ± 10 ◦C.

Spherical silver particles with a mean diameter x50 = 1.5 µm, according to Fraunhofer diffraction,
were dispersed in these vehicles at a concentration of 80 wt % to formulate printable silver pastes.
A three-roll mill (EXAKT 80E, EXAKT Advanced Technologies GmbH, Norderstedt, Germany) and
a non-contact planetary mixer (SpeedMixerTM, Hauschild GmbH, Hamm, Germany) were used to
manufacture homogeneous pastes free of agglomerates as confirmed by the low fineness of grind
value (FOG) ≈ 8 ± 2 µm. All vehicles and silver pastes were prepared by Heraeus Deutschland GmbH
& Co. KG in Hanau, Germany as described above.

Table 1. Overview of investigated model vehicles (V1, V2, and V3) and model silver pastes (M1, M2,
and M3). Vehicles included thixotropic agent and ethyl cellulose binder at varying mixing ratios.
Model silver pastes additionally contained 80 wt % (corresponding to 36.4 vol %) spherical silver
particles (x50 = 1.5 µm).

Sample Silver Particles
(wt %)

Thixotropic
Agent (wt %)

Ethyl Cellulose
Binder (wt %)

Organic Solvent
(wt %)

V1 0 11.73 5.61 82.65
V2 0 11.80 5.05 83.14
V3 0 13.49 5.50 81.00
M1 80 2.35 1.12 16.53
M2 80 2.36 1.01 16.63
M3 80 2.70 1.10 16.20

3. Experimental Methods

A series of rheological and screen-printing experiments were performed to correlate flow
properties and screen-printing results of model vehicles (V1, V2, and V3) and model pastes (M1, M2,
and M3). Experimental investigations were separated into two parts. The first consisted of the
rheological investigations performed at the Institute for Mechanical Engineering and Mechanics at KIT
(Karlsruhe Institute of Technology) in Karlsruhe, Germany. A thorough rheological characterization
was performed, including steady and oscillatory rotational shear rheometry, capillary viscometry and
filament stretching elongational rheometry, as described in [24]. Secondary flow effects, such as wall
slip, shear banding and sample spillage, were carefully considered. The second part included printing
tests of model pastes. We conducted screen-printing experiments with a half-automatic gadget at the
laboratories of Heraeus Deutschland GmbH & Co. KG in Hanau, Germany. All experiments were
conducted at 23 ◦C.
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3.1. Rheological Measurements

Yield stress measurements were performed using a stress-controlled rheometer setup (Haake
RS150, Thermo Fisher Scientific, Karlsruhe, Germany) equipped with a vane-and-cup fixture.
We performed the measurements in a stepwise controlled stress mode. The shear stress was varied
from 1 to 5000 Pa, in 41 steps, equally separated on a logarithmic scale, and each stress was applied
for 30 s. Yield stress values were determined from the measured deformation using the tangent
intersection point method [24,32,33].

A rotational rheometer with parallel-plate measuring system (Physica MCR501, Anton
Paar Germany GmbH, Ostfildern, Germany) and a customized capillary rheometer (Göttfert
Rheograph 2000, Göttfert Werkstoff-Prüfmaschinen GmbH, Buchen, Germany) were used for viscosity
measurements to cover paste behavior at low and high shear rates. Choosing a plate roughness of
Rq = 2–4 µm avoided wall slip effects and/or plug flow in the measuring gap by video imaging of
the gap edge described in [24]. The measuring gap height was h = 1 mm and the plate diameter,
dplate = 25 mm. Rotational rheometer measurements were taken using a stepwise controlled rate
adjustment. The shear rate was varied from 0.01 to 1000 s−1 in 41 steps, equally separated on
a logarithmic scale, and each shear rate was applied for 30 s. Capillary rheometry was undertaken
using a capillary nozzle with diameter, dnozzle = 0.5 mm, and length, Lnozzle = 40 mm. The paste was
filled into a feed reservoir with diameter, Dreservoir = 20 mm, and pushed through the nozzle at the
center of the reservoir bottom at velocities between 0.05 and 20 mm s−1, corresponding to shear rates
between 720 and 3 × 105 s−1. The corresponding pressure drop was recorded using a 500-bar pressure
transducer (Gefran Deutschland GmbH, Seligenstadt, Germany). Sample viscosity was calculated
from this pressure drop and the corresponding flow rate. The Rabinowitsch–Weissenberg correction
was performed to obtain true shear rates taking into account deviations from the parabolic flow profile
in the nozzle [34].

Wall slip velocity was determined in a parallel-plate rheometer (Haake RS150). The measuring
gap height was h = 1 mm and plate radius, r = 10 mm. A smooth upper plate (Rq = 1 µm) and a rough
bottom plate (Rq = 9 µm) were used to assure that slip takes place at the upper plate and that the rest
of the sample remained undeformed [22]. The slip velocity could then be calculated as vslip = 2πnr,
where n is the rotational speed of the upper plate. Experiments were done at shear stresses between
τ = 200 Pa and the yield stress τy of the respective paste.

Sample spillage is known to limit the shear rate range for flow curve measurements. Spillage
shows up as a downward kink in apparent viscosity versus shear rate data, and the critical rotational
speed for the onset of spillage was determined at various plate separations between 0.2 and 2 mm for
plates with different roughness 1 µm < Rq < 9 µm.

Oscillatory shear experiments were conducted using a rotational rheometer (Physica MCR501)
with a parallel-plate measuring system (dplate = 25 mm, Rq = 2–4 µm, h = 1 mm). Measurements
with varying strain amplitude (γ̂ = 0.001%–100%, in 35 steps, equally separated on a logarithmic
scale) at constant frequency f = 1 Hz allowed for determination of the plateau modulus G0, defined
as the value of the storage modulus G’ in the linear viscoelastic regime (LVE) where G’ and G” were
independent of the strain amplitude, as well as for determination of the crossover-stress τ̂c at which
G’ = G”, with the loss modulus G”. The frequency dependence of G’ and G” was examined at constant
amplitude γ̂ = 25% covering the frequency range f = 100–0.001 Hz in a downward mode.

Information about structural recovery of model vehicles and silver pastes was obtained from
oscillatory time interval tests as described in [16,24]. The measurement protocol comprised three
sections with different deformation, but constant frequency f = 1 Hz, to mimic the paste deformation
during the screen-printing process. The deformation applied in Sections I and III was γ̂ = 0.05%,
i.e., in the LVE regime, to represent the behavior during pre-print and at rest, after the paste was
pushed through the finger opening. Measuring times were selected as 400 s for the first step and
20 min for the third recovery step. In Section II we applied the deformation γ̂ = 90% to simulate the
paste transfer through the finger opening. This measurement period lasted for 150 s.



Coatings 2018, 8, 406 5 of 17

A capillary breakup elongation rheometer (CaBER) (HAAKE CaBER1, Thermo Fisher Scientific,
Karlsruhe, Germany) was used to perform filament stretching experiments. Therefore, the measuring
gap (height h0 = 1 mm) between two pistons (diameter dpiston = 6 mm) was filled with the sample,
and the upper piston was moved from h0 = 1 mm to the end position hend = 16 mm, at constant
stretching velocity vstretch = 110 mm s−1. A high-speed camera (Photron FastCam-X1024 PCI, Photon,
Pfullingen, Germany) was used to record the change in filament shape at 250 fps during stretching.
The filament breakage length hbreak and the fracture strain ε = (hbreak − h0)/h0 were determined from
corresponding video image sequences.

3.2. Screen-Printing Tests and Morphology Observation of Printed Electrodes

Screen-printing tests were performed with a half-automatic EKRA X1-SL screen printer (EKRA
Screen Printing Technologies, ASYS Group, Dornstadt, Germany). A stainless-steel screen mesh
(360 meshes per inch with a layout of about 50 µm down to 20 µm finger opening, 16 µm thread
diameter and 13 µm emulsion over mesh (EOM) thickness) was used to perform printing tests.
An RKS® squeegee (200 mm length) (RK Siebdrucktechnik GmbH, Rösrath, Germany) with a 65 shore
hardness and forming a 60◦ angle with the screen was used for printing. The printing speed was
varied between 70 and 210 mm s−1. Snap-off distance between the screen mesh and the substrate
was fixed at hsnap-off = 1.5 mm. The monocrystalline (Cz) Si wafers were weighed before and after the
printing process to determine the paste laydown on the substrate. In the final step, printed substrates
were dried in a drying chamber at 150 ◦C for about 10 min.

The morphology of dried finger profiles obtained from 25, 30, and 50 µm finger line openings were
examined with a 3D laser scanning microscopy (VK-X100 Laser Microscope, Keyence Deutschland
GmbH, Neu-Isenburg, Germany). Therefore, we selected finger lines located at the same position
on five different Si wafers for each paste and each finger line opening to assure that these fingers
were printed through the same screen area. Self-programmed MATLAB-code (MATLAB R2017a) was
used to characterize the finger width wf and finger height hf. The cross-sectional area Af of printed
finger lines was calculated by integration of the finger profile perpendicular to the printing direction.
The aspect ratio AR was given by AR = hfwf

−1 The average and standard deviation values for these
quantities were calculated from the respective data obtained for the five different wafers.

4. Results and Discussion

4.1. Rheological Properties of Model Vehicles and Model Silver Pastes

All samples investigated in this work exhibit a yield stress τy which is the minimum stress required
to force the sample to flow due to stress-induced structural rearrangements or breakdown of the sample’s
network structure. Yield stress data for model vehicles and silver pastes are shown in Figure 1.
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Coatings 2018, 8, 406 6 of 17

The yield stress increases from V1 to V3, and, respectively, from M1 to M3. The yield stress
of the vehicles and the silver pastes is mainly controlled by the strong sample spanning structure
formed by T-Max during organic medium preparation, which prevents phase separation and ensures
long storage periods [17,26]. In the silver pastes, van der Waals interactions among particles and
depletion attraction triggered by free (nonadsorbing) ethyl cellulose may additionally contribute
to reinforce the network structure [26,35]. In our model vehicle series, the slight increase in T-Max
from 11.73 wt % to 13.49 wt % resulted in a four-fold increase in τy from 180 to 830 Pa. For the silver
pastes, however, the same relative rise in T-Max only led to a doubling of the yield stress from 495 to
990 Pa. The vehicle without T-Max does not exhibit yield stress at all. The paste without T-Max has
a very small, hardly measurable yield stress (~10 Pa) and exhibits rapid phase separation (data not
shown). The yield stress of the pastes including T-Max therefore cannot be assumed to be a simple
superposition of a T-Max network structure and a particle network, but has to be rationalized as the
result of a reinforcement of the T-Max structure by the particles. The ratio of paste and vehicle yield
stress decreases with increasing T-Max content, indicating that the structure formed by the thixotropic
agent is partly destroyed by the silver particles or that the silver particles cannot reinforce the denser
structure at higher levels of T-Max content completely.

Yield stress is considered to be one of the key parameters controlling screen-printing behavior.
However, viscosity at low and high shear rates may also affect the paste behavior during the printing
process. A low high shear viscosity is reported to ease paste transfer through the screen and subsequent
release from the screen [17,20], and a high low shear viscosity is reported to ensure finger line
stability [23]. A certain degree of shear thinning is furthermore required to push the paste through the
screen opening during squeegee movement [16,17].

Viscosity curves of all samples investigated here clearly exhibit shear thinning behavior (data not
shown). Results obtained at the low shear rate

.
γ = 0.5 s−1 are shown in Figure 2a. Figure 2b displays

corresponding data obtained at
.
γ = 3 × 105 s−1.
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Figure 2. (a) Low shear viscosity values determined from rotational rheometry (parallel-plate geometry,
dplate = 25 mm, Rq = 2–4 µm, h = 1 mm) at

.
γ = 0.5 s−1; (b) High shear viscosity results determined using

a capillary rheometer (Lnozzle = 40 mm, dnozzle = 0.5 µm) at
.
γ = 3 × 105 s−1. Patterned bars correspond

to vehicles, filled bars represent silver pastes.

As for yield stress, we observe a strong increase in low shear viscosity due to the slightly increased
T-Max content. For the vehicle, this increase is five-fold whereas the low shear viscosity of the silver
pastes only doubles. This again indicates that the structure formed by the thixotropic agent is partly
destroyed by the silver particles.

The viscosity values at
.
γ = 3 × 105 s−1 are about four orders of magnitude smaller than the

corresponding values at
.
γ = 0.5 s−1. This is true for the vehicles as well as for the pastes and

demonstrates the high degree of shear thinning of these systems. This strong viscosity drop is due to
the breakdown of the T-Max structure and the high shear viscosity of the vehicles is determined by the



Coatings 2018, 8, 406 7 of 17

solvent mixture, as well as the dissolved EC binder. Since the binder concentration hardly varies among
the investigated samples and the solvent mixture is the same in all cases, the high shear viscosity is
essentially the same for all three vehicles, as well as for the pastes. The paste viscosity is about twice
as high as the vehicle viscosity. For a suspension with 36.4 vol % particle loading, as investigated
here, a relative viscosity ηr = ηpaste/ηvehicle ≈ 6 would be expected [36]. This discrepancy shows
that the thixotropic agent T-Max is partly de-activated upon addition of silver particles as already
indicated by the lower change of τy and ηlow upon T-Max variation when comparing pastes and
corresponding vehicles.

The rheological characterization of highly loaded silver pastes in a parallel-plate rotational
rheometer is limited regarding higher shear rates due to sample spillage [24,28]. We investigate this
gap drainage phenomenon for different values of plate roughness Rq between 1 and 9 µm. Sample
spillage occurs at a certain rotational speed ncrit which increases with decreasing plate roughness and
sample yield stress (see Figure A1 in Appendix A). Spillage is a phenomenon occurring in silver pastes
with a high-density difference between disperse and continuous phases, but does not occur in pure
vehicles. Therefore, we assume that it is an inertia-driven phenomenon and a minimum energy input
(τ

.
γ) is required to drain the gap. This energy transfer is higher for samples with higher τy and when

rough plates prevent slip, i.e., the sample is exposed to higher shear rates.
Previous work revealed that wall slip promotes paste transfer and leads to improved finger

line/busbar connections [22]. Wall slip effects often disturb the rheological characterization of highly
filled pastes or suspensions, and viscosity data may be blurred if slip is not taken into account
adequately. No indication for wall slip was found for the vehicles investigated here. The pastes’ slip
velocity vslip is displayed as a function of shear stress τ (Figure 3). Slip velocity increases linearly with
increasing shear stress. The applied stress was varied between τ = 200 Pa and τy of the respective paste.
For a given τ the wall slip velocity decreases with increasing T-Max content. The characteristic slip
velocity V* [37] is obtained at the yield stress τy of the respective paste, but is independent of sample
composition. It should be kept in mind that the slip velocities found here are more than an order of
magnitude lower than those reported earlier [22], i.e., wall slip is of minor relevance for the pastes
investigated here.
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of applied shear stress, vslip, determined as described in Section 3.1. The characteristic slip velocity V*
occurs at the yield stress of the paste.

Oscillatory shear measurements are not limited due to sample spillage or wall slip effects occurring
in steady shear experiments. Frequency sweep experiments demonstrate the dominating elastic
properties of the vehicles as well as the pastes, i.e., G’ is independent of frequency and G’ >> G”, in the
linear response regime (see Figure A2a in Appendix A). Figure 4a shows the corresponding G0 = G’
(f = 1 Hz) data for all investigated samples.
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As for τy and ηlow, we find a strong increase in G0 with increasing T-Max content and again
this increase is more pronounced for the vehicle than for the paste. Amplitude sweep experiments
(at a fixed frequency f = 1 Hz) were performed to determine the critical stress amplitude τ̂c at which
G’ = G” (see Figure A2b in Appendix A). This crossover indicates a structural breakdown and this kind
of oscillatory shear test is considered as an alternative approach to determine τy [38]. Corresponding τ̂c

data for all investigated vehicles and silver pastes are displayed in Figure 4b. As expected, τ̂c increases
with increasing T-Max content and this effect is less pronounced for the pastes than for the vehicles.
The absolute τ̂c values agree fairly well with the corresponding τy data.

A three-interval shear test as suggested in [16] and later used in [17,21,24,30] was performed to
characterize the structural recovery after large shear deformation. Here, the degree of recovery is
calculated as the ratio of G’fin obtained as the limiting G’ value in Section III and G’ini determined
in Section I. In the second interval, a shear deformation amplitude γ̂ = 90% is applied for 150 s to
assure extensive structural breakdown, and to achieve good paste transfer across the screen [16].
Corresponding data shown in Figure 5a reveal that the paste structure is irreversibly damaged during
high shear in Section II. Similar results have been previously reported for silver [24] and ZnO pastes [30].
The degree of irreversible damage is generally controlled by the interactions among solid particles,
thixotropic agent and binder [39]. Here, this change in structure is more pronounced for the pastes than
for the vehicles and increases with increasing T-Max content as already reported for ZnO pastes [30].

1 
 

 

 

 

Figure 4. (a) Plateau modulus G0 = G’ (f = 1 Hz) determined in the LVE regime; (b) Critical stress
amplitude τ̂c determined from the crossover of G’ and G” in amplitude sweep experiments performed
at f = 1 Hz. Patterned bars correspond to vehicles, filled bars represent silver pastes.

1 
 

 

 

 
Figure 5. (a) Degree of structural recovery for vehicles and silver pastes represented as G’fin/G’ini

determined from oscillatory three-interval thixotropy tests. The applied oscillatory amplitude in
Sections I and III is in each case γ̂I,III = 0.05% and in Section II γ̂II = 90%; (b) Absolute degree of recovery
G’III,20 s after 20 s rest time in section III at γ̂III = 0.05%. Patterned bars correspond to vehicles, filled
bars represent silver pastes.
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Additionally, we have determined the modulus G’ in Section III, 20 s after cessation of high shear
deformation. This time period approximately corresponds to the interval between the solar cell printing
step and the drying step [21]. As shown in Figure 5b G’III,20 s increases with increasing T-Max content.
This is again true for the vehicles as well as for the pastes, and obviously the irreversible damage of
the paste structure, which also increases with increasing T-Max content, does not compensate for this
effect. It should be kept in mind, however, that the characterization of structural recovery relies on
oscillatory shear deformation data obtained on a time scale of several tenths of seconds. By contrast,
printing and spreading of silver lines in solar cell metallization happens in less than 0.1 s based on
high-speed camera observations [30] and may not be related to the long term rheological changes
characterized by this kind of three-interval thixotropy test [16,17,21,24].

Filament breakage length, respectively fracture strain ε, was determined in uniaxial extension to
understand the paste behavior during snap-off in the printing process. Paste sticking to the substrate or
the screen experiences a tensile stress when the screen detaches from the wafer. We used a commercial
CaBER device to determine the fracture strain ε. A constant stretching velocity vstretch = 110 mm s−1

was chosen and the corresponding ε values are shown in Figure 6. Obviously, fracture strain decreases
with increasing T-Max content. Again, this effect is more pronounced for the vehicles than for the
pastes. Similar behavior was observed earlier for ZnO pastes with different T-Max content [30].
The sample spanning network structure provided by this thixotropic agent cannot withstand strong
tensile stresses and exhibits brittle failure.
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capillary breakup elongation rheometer (CaBER) device at vstretch = 110 mm s−1 stretching speed.
Exemplary pictures of stretched and broken filaments for vehicles and silver pastes are shown inset.
Patterned bars correspond to vehicles, filled bars represent silver pastes.

In summary, this section provides a comprehensive rheological characterization of silver
pastes and corresponding vehicles essentially differing in the amount of included thixotropy agent
T-Max. The parameters τy, τ̂c, G0, and ηlow are tightly related, and all increase strongly with
T-Max concentration. However, this effect is more pronounced for the vehicles than for the pastes,
indicating that the structure provided by the thixotropic agent is partly disturbed by the added silver
particles. The fracture strain ε in uniaxial extension is another, independent paste rheology parameter.
This quantity decreases substantially with increasing T-Max content. The structure provided by the
thixotropic agent is destroyed during high shear deformation and only partly recovers after cessation of
flow. The degree of irreversible damage increases with increasing T-Max content. Furthermore, the slip
on steel surfaces (determined at stresses below τy) decreases with increasing T-Max content. Finally,
high shear viscosity is a rheological quantity which, in contrast to all other rheological parameters
mentioned above, does not vary with the thixotropy agent content. It should also be noted that the
wetting properties of the silver pastes are not affected by the thixotropy agent. In the next section,
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we will discuss how the distinct differences in flow behavior of the prepared silver pastes are seen in
the properties of finger lines obtained via screen-printing.

4.2. Printed Finger Morphology Characterization

An overview of our 156 × 156 mm2 test layout pattern printed on monocrystalline (Cz) Si-solar
cell at speed of 210 mm s−1 is represented in Figure 7. Here we used paste M1, but similar results were
obtained for M2 and M3. This test layout contains eight finger openings from 20 to 55 µm. Based on
this example, uniform, interruption-free printed finger lines can be observed down to 25 µm finger
opening. It should be noted that our layout screen includes a 13 µm thick emulsion over mesh (EOM)
layer. Interruption-free printing through a 20 µm finger opening would require an EOM layer thickness
below 10 µm, as is typically used in fine line printing [21,40,41]. In general, print results are not only
affected by paste rheology or wetting properties, but also by the printer hardware, such as the screen
(design of steel mesh and EOM type and layer thickness), and printer settings (e.g., squeegee angle,
squeegee speed, snap-off distance and the magnitude of the force that presses the squeegee against the
screen and substrate) [20].
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Figure 7. Model silver paste M3 printed on a (Cz) Si wafer using a test layout pattern with eight
different finger openings between 20 and 55 µm at printing speed vprint = 210 mm s−1.

However, our focus is the characterization of finger lines printed through 25, 30, and 50 µm finger
openings at various printing velocities vprint = 70, 140, and 210 mm s−1. For the layout screen used here,
these finger openings provide uniform interruption-free finger lines suitable for a systematic study
of the influence of paste composition, as well as printing speed on the morphology of printed lines.
Paste transfer, or laydown, is a characteristic feature of a printing process not only for metallization of
solar cells. Results for pastes M1–M3 obtained with the above-mentioned layout screen at different
printing speeds for a 50 µm finger opening are summarized in Table 2. Essentially the same paste
laydown of about 53 mg is achieved, irrespective of paste composition and printing speed; however, at
low printing speeds paste M3 enables a slightly higher transfer of 56 mg.
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Table 2. Paste transfer for model silver pastes M1, M2, and M3 obtained through 50 µm finger opening
at different printing velocities 70, 140, and 210 mm s−1.

Printing Speed
Paste Laydown (mg)

M1 M2 M3

70 mm s−1 52.00 ± 0.85 53.60 ± 0.98 56.10 ± 1.06
140 mm s−1 52.30 ± 0.53 53.80 ± 0.14 56.00 ± 0.12
210 mm s−1 52.90 ± 0.14 53.20 ± 0.64 53.50 ± 0.64

The differences in wall slip previously shown to have a strong effect on paste transfer [22,23] do
not show up here and we attribute this to the low absolute slip velocity values measured on a smooth
steel plate (Section 4.1) indicating that slip is of minor relevance for the pastes investigated.

Key characteristic parameters of printed electrodes are finger width wf and its fluctuation, finger
height hf, and the corresponding cross-sectional area Af and aspect ratio AR. Evaluation of these
parameters is carried out using a 3D laser scanning microscope. In Figure 8, finger width results are
plotted in a box plot diagram versus printing speed for electrode lines printed through dfinger = 50 µm
finger opening. Results for pastes M1–M3 are separated into three groups. Our results confirm that the
variation of printing speed has no significant effect on finger width, and wf seems to decrease slightly
with increasing T-Max content. However, this effect is more pronounced at lower mesh openings and
will be discussed below. During the screen-printing process pastes are exposed to high shear rates,
especially when pushed through the finger openings [18,20]. Since the high shear viscosity is the same
for all investigated pastes, a variation in wf is not expected. In all printing trials, the finger width is
about 75% higher than the finger opening. This is attributed to the low absolute value of the viscosity
in the high shear regime. A finger width wf closer to the finger opening can be achieved using pastes
with substantially higher viscosity at high shear rates [30].

Coatings 2018, 8, x FOR PEER REVIEW  11 of 17 

 

The differences in wall slip previously shown to have a strong effect on paste transfer [22,23] do 
not show up here and we attribute this to the low absolute slip velocity values measured on a smooth 
steel plate (Section 4.1) indicating that slip is of minor relevance for the pastes investigated.  

Key characteristic parameters of printed electrodes are finger width wf and its fluctuation, finger 
height hf, and the corresponding cross-sectional area Af and aspect ratio AR. Evaluation of these 
parameters is carried out using a 3D laser scanning microscope. In Figure 8, finger width results are 
plotted in a box plot diagram versus printing speed for electrode lines printed through dfinger = 50 µm 
finger opening. Results for pastes M1–M3 are separated into three groups. Our results confirm that 
the variation of printing speed has no significant effect on finger width, and wf seems to decrease 
slightly with increasing T-Max content. However, this effect is more pronounced at lower mesh 
openings and will be discussed below. During the screen-printing process pastes are exposed to high 
shear rates, especially when pushed through the finger openings [18,20]. Since the high shear 
viscosity is the same for all investigated pastes, a variation in wf is not expected. In all printing trials, 
the finger width is about 75% higher than the finger opening. This is attributed to the low absolute 
value of the viscosity in the high shear regime. A finger width wf closer to the finger opening can be 
achieved using pastes with substantially higher viscosity at high shear rates [30].  

 

Figure 8. Resulting finger widths wf printed through a 50 µm finger opening are plotted versus 
printing speed vprint (70, 140, and 210 mm s−1) for model silver pastes M1, M2, and M3. 

Since printing speed has no influence on finger width here, we decide to characterize further 
geometrical parameters of printed lines only for printing speed vprint = 210 mm s−1, which is close to 
the state-of-the-art in front-side metallization of Si-solar cells. The results of finger lines printed 
through 25, 30, and 50 µm finger openings are shown in Figure 9. Finger width is obviously smaller 
for a narrower finger opening but the deviations between resulting finger width wf and finger 
opening are even more pronounced for smaller openings; e.g., for the 25 µm finger opening, the 
obtained true line width is almost three times larger than the opening of the screen. Overall, there is 
a small effect of sample composition on line width and wf decreases from M1 to M3, i.e., with 
increasing T-Max content. We attribute this to the two-fold increase in τy. The weak dependence of 
wf on the inverse of the product (τyηhigh) reported in [30] for two series of ZnO pastes with varying 
content of T-Max or EC binder, respectively, also appears to be revealed here.  
  

Figure 8. Resulting finger widths wf printed through a 50 µm finger opening are plotted versus printing
speed vprint (70, 140, and 210 mm s−1) for model silver pastes M1, M2, and M3.

Since printing speed has no influence on finger width here, we decide to characterize further
geometrical parameters of printed lines only for printing speed vprint = 210 mm s−1, which is close
to the state-of-the-art in front-side metallization of Si-solar cells. The results of finger lines printed
through 25, 30, and 50 µm finger openings are shown in Figure 9. Finger width is obviously smaller
for a narrower finger opening but the deviations between resulting finger width wf and finger opening
are even more pronounced for smaller openings; e.g., for the 25 µm finger opening, the obtained true
line width is almost three times larger than the opening of the screen. Overall, there is a small effect
of sample composition on line width and wf decreases from M1 to M3, i.e., with increasing T-Max
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content. We attribute this to the two-fold increase in τy. The weak dependence of wf on the inverse of
the product (τyηhigh) reported in [30] for two series of ZnO pastes with varying content of T-Max or
EC binder, respectively, also appears to be revealed here.Coatings 2018, 8, x FOR PEER REVIEW  12 of 17 
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Figure 9. Finger width values for M1, M2, and M3 printed through 25, 30, and 50 µm finger openings
at vprint = 210 mm s−1.

In all cases we observe severe fluctuations in line width. The electrical properties of printed
electronic devices are not only determined by the printed line width but also by the homogeneity of
the obtained structures in terms of width and height. Therefore, the degree of fluctuation in finger
width is determined for 10 lines, each 40 mm in length. The width is evaluated at each pixel position.
Afterwards, the standard deviation ∆wf is calculated to characterize the fluctuations of the printed
electrode width. In Figure 10 the relative fluctuation ∆wf/wf is plotted for each paste printed through
25, 30, and 50 µm finger openings.

Coatings 2018, 8, x FOR PEER REVIEW  12 of 17 

 

 

Figure 9. Finger width values for M1, M2, and M3 printed through 25, 30, and 50 µm finger openings 
at vprint = 210 mm s−1.  

In all cases we observe severe fluctuations in line width. The electrical properties of printed 
electronic devices are not only determined by the printed line width but also by the homogeneity of 
the obtained structures in terms of width and height. Therefore, the degree of fluctuation in finger 
width is determined for 10 lines, each 40 mm in length. The width is evaluated at each pixel position. 
Afterwards, the standard deviation ∆wf is calculated to characterize the fluctuations of the printed 
electrode width. In Figure 10 the relative fluctuation ∆wf/wf is plotted for each paste printed through 
25, 30, and 50 µm finger openings.  

 

Figure 10. Degree of fluctuation in dried finger line width after screen-printing at vprint = 210 mm s−1. 

The relative fluctuations in line width clearly decrease strongly with increasing finger opening, 
although the absolute values of wf are fairly close and much larger than the used finger opening. Paste 
spreading and hence line width, as well as line width fluctuations, depend on the wetting properties 
of the paste on the substrate and also the paste rheology, especially at high shear rates. Neither the 
wetting behavior or ηhigh vary among the pastes investigated here and, hence, it seems to be 
reasonable that ∆wf/wf does not vary much with paste composition. For smaller finger openings, 
relative finger width fluctuations seem to increase slightly with increasing yield stress. It should also 
be noted that the characteristic length scale of the pyramidal wafer surface texture is much smaller 
than the observed line width fluctuations.  

Finger height hf results obtained for pastes M1–M3 printed through 25, 30, and 50 µm finger 
openings at printing speed vprint = 210 mm s−1 are shown in Figure 11. These data suggest that hf weakly 
increases with T-Max concentration, i.e., with increasing yield stress. An opposite trend was observed 
for wf (see Figure 9) and, accordingly, the aspect ratio AR = hfwf−1, shown in Figure 12a, clearly 

Figure 10. Degree of fluctuation in dried finger line width after screen-printing at vprint = 210 mm s−1.

The relative fluctuations in line width clearly decrease strongly with increasing finger opening,
although the absolute values of wf are fairly close and much larger than the used finger opening.
Paste spreading and hence line width, as well as line width fluctuations, depend on the wetting
properties of the paste on the substrate and also the paste rheology, especially at high shear rates.
Neither the wetting behavior or ηhigh vary among the pastes investigated here and, hence, it seems to
be reasonable that ∆wf/wf does not vary much with paste composition. For smaller finger openings,
relative finger width fluctuations seem to increase slightly with increasing yield stress. It should also
be noted that the characteristic length scale of the pyramidal wafer surface texture is much smaller
than the observed line width fluctuations.
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Finger height hf results obtained for pastes M1–M3 printed through 25, 30, and 50 µm finger
openings at printing speed vprint = 210 mm s−1 are shown in Figure 11. These data suggest that hf
weakly increases with T-Max concentration, i.e., with increasing yield stress. An opposite trend was
observed for wf (see Figure 9) and, accordingly, the aspect ratio AR = hfwf

−1, shown in Figure 12a,
clearly increases with increasing τy. On the other hand, the cross-sectional area Af ≈ wfhf is
independent of sample composition due to the opposing effects of τy on wf and hf (Figure 12b). This is
consistent with the initially stated paste transfer independent of paste composition. As expected,
the absolute value of Af, and, hence, the paste transfer increases with increased finger opening.
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The variations in paste transfer and also in finger cross-sectional area are small since high shear
viscosity and substrate wetting behavior are similar for all pastes, and the differences in wall slip
velocity do not affect paste transfer because the overall contribution of slip to paste transport through
the finger opening is supposed to be small. However, the aspect ratio AR increases significantly with
increasing T-Max content due to its impact on yield stress and low shear viscosity. This should finally
show up in an improved cell efficiency ηel which is proportional to the short circuit current density JSC

increasing with AR corresponding to reduced shading losses. Grid and line resistance, however, solely
depend on Af (and its fluctuations) and hence should not be affected here, since Af is independent of
paste composition.
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5. Conclusions

We have thoroughly investigated the rheological properties of three silver pastes suitable for
front-side metallization of Si-solar cells, and corresponding vehicles mainly differing with respect to
the concentration of thixotropic agent Thixatrol Max. Even minor changes in T-Max concentration led
to drastic changes in rheological response. This effect is more pronounced for the vehicles than for the
pastes, indicating that the network structure formed by this hydrogenated castor oil is partly disturbed
by the suspended silver particles.

Increasing the T-Max concentration by only 15% leads to a twofold (at least) increase of yield
stress, low shear viscosity and storage modulus in the pastes. At the same time, the fracture strain
in uniaxial extension drops by about one-third. These T-Max based vehicles and pastes are sensitive
to high shear deformation and an irreversible damage of the structure was found in widely used,
so-called three-interval thixotropy tests. Wall slip on smooth steel plates was observed for the pastes,
however, the absolute slip velocity values were small compared to other silver paste formulations.
Finally, it should be noted that the high shear viscosity of the samples obtained at a shear rate of
3 × 105 s−1 was independent of T-Max concentration; obviously, the network structure breaks down
at such high shear rates.

We screen-printed these pastes using a layout screen with different finger openings at various
printing speeds in order to elucidate how the substantial changes in paste rheology show up in the
printed finger line morphology. We focused on finger openings between 25 and 50 µm and varied
printing speeds between 70 and 210 mm s−1. In all cases the observed true line width was much larger
than the finger opening and we attribute this to the low high shear viscosity of the pastes since the EC
binder content was kept constant at a low level.

The observed strong fluctuations in line width were mostly independent of finger opening
and paste composition. We assume this phenomenon is mainly controlled by wetting properties,
which are not affected by the thixotropic agent and can be safely assumed to be the same for all
investigated pastes. However, finger width wf and height hf turned out to depend weakly on paste
composition. Whereas wf decreases, hf increases slightly with increasing T-Max concentration, i.e., with
increasing yield stress τy. Accordingly, the aspect ratio AR = hfwf

−1 exhibits a distinct dependence
on τy, whereas the cross-sectional area Af is independent of sample composition (i.e., τy) consistent
with the gravimetric paste transfer determination revealing that paste laydown is independent of
T-Max content. As pointed out earlier, paste transfer strongly depends on wall slip and this feature is
mainly controlled by particle loading and solvent wetting properties not modified here. Our results do
not support the hypothesis that fracture strain significantly affects snap-off and hence paste transfer.
We also do not see that differences in structural recovery or degree of irreversible structural damage as
characterized in three-interval oscillatory shear tests are manifested in the printing results.

In summary, the screen-printing process was found to be robust against changes in paste rheology.
A twofold increase in τy induces a 15%–20% increase in finger line aspect ratio AR without affecting
the total laydown. This observed increase in AR should have a significant impact on electrical cell
properties due to reduced shading losses obtained from finer line-widths at a given cross-sectional area.
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