Home | deutsch  | Legals | Data Protection | Sitemap | KIT

Synthesis of Pt/SiO2 catalyst nanoparticles from a continuous aerosol process using novel cyclo-octadienylplatinum precursors

Synthesis of Pt/SiO2 catalyst nanoparticles from a continuous aerosol process using novel cyclo-octadienylplatinum precursors
Author:

M. Faust, M. Enders, K. Gao, L. Reichenbach, T. Muller, W. Gerlinger, B. Sachweh, G. Kasper, M. Bruns, S. Bräse, M. Seipenbusch

Source:

Chemical Vapor Deposition, 2013, 19, 274-283-10, DOI: 10.1002/cvde.201207038

Investigations on the metal-organic (MO)CVD of platinum nanoparticles on spherical, chemical vapor synthesis (CVS)-produced SiO2 substrates are discussed in this paper. Commercially available methylcyclopentadienyl trimethyl platinum(MeCpPtMe3) (1) and three newly synthesized cyclooctadienyl platinum precursors are chosen and tested during a continuousCVD/CVS process. The synthesis of this new class of stable, halogen-free precursors for atmospheric pressure (AP)CVD ispresented. The complexes [PtMe2(R-COD)], where R ¼ Et (2a), nBu (2b), and iBu (2c), are shown to be highly suitable for thepreparation of platinum nanoparticles. The precursors are characterized and their thermal properties are studied bythermogravimetric analysis (TGA) and infrared (IR). Investigations of the precursor decomposition mechanism, the effect of oxygen, and the autocatalytic effect during CVD are also carried out. Finally, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses prove that continuous CVS of gas-borne support particles combined with MOCVD of these newly synthesized platinum precursors gives ordered, defined platinum nanocatalysts with high dispersion and narrow size distribution (2 - 3 nm).